Exclusive Content:

Haiper steps out of stealth mode, secures $13.8 million seed funding for video-generative AI

Haiper Emerges from Stealth Mode with $13.8 Million Seed...

VOXI UK Launches First AI Chatbot to Support Customers

VOXI Launches AI Chatbot to Revolutionize Customer Services in...

WW-PGD: Calculated Projected Gradient Descent Optimizer

Introducing WW-PGD: A Cutting-Edge Add-On for Optimizer Enhancement ๐Ÿš€

Discover the latest release of WW-PGD, a PyTorch add-on designed to supercharge your model training by integrating epoch-boundary spectral projections with standard optimizers. Unleash optimized performance and detailed spectral control in your deep learning workflows!

Announcing: ๐—ช๐—ช-๐—ฃ๐—š๐—— โ€” ๐—ช๐—ฒ๐—ถ๐—ด๐—ต๐˜๐—ช๐—ฎ๐˜๐—ฐ๐—ต๐—ฒ๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐—ฒ๐—ฑ ๐—š๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ฒ๐—ป๐˜ ๐——๐—ฒ๐˜€๐—ฐ๐—ฒ๐—ป๐˜ ๐Ÿš€

I’m thrilled to announce the release of WW-PGDโ€”a novel PyTorch add-on designed to empower your deep learning optimization process. This small yet powerful tool wraps around standard optimizers like SGD, Adam, and AdamW, incorporating an epoch-boundary spectral projection powered by WeightWatcher diagnostics.

๐Ÿš€ Elevator Pitch

WW-PGD doesn’t just optimize; it strategically nudges each layer towards the Exact Renormalization Group (ERG) critical manifold during training. This approach ensures that you’re aiming for the right optimization targets right from the get-go, rather than relying on post-hoc diagnostics.

๐Ÿ“š Theory in Short

  • HTSR Critical Condition: ฮฑ โ‰ˆ 2
  • SETOL ERG Condition: trace-log(ฮป) over the spectral tail = 0

By making these conditions explicit optimization goals, WW-PGD brings a new level of precision to layer management during training.

โš™๏ธ How It Works

Here’s a quick overview of the mechanics:

  1. Runs WeightWatcher (ww) at Epoch Boundaries: At the end of each epoch, WW-PGD evaluates the model’s weight distribution.
  2. Identifies the Spectral Tail: Utilizes layer quality metrics from ww to determine which portion of the weight distribution is the spectral tail.
  3. Optimal Tail Guess Selection: It selects an optimal guess for the tail at each epoch.
  4. Applies Projected Gradient Descent Update: Uses a stable, Cayley-like Proximal step to update the layerโ€™s spectral density.
  5. Retracts to Satisfy SETOL ERG Condition: Ensures that updates adhere to the spectral constraints.
  6. Blends Projected Weights Back In: Incorporates a "warmup" + ramping process to avoid instability early on.

In essence, WW-PGD provides a mechanism to project the optimizer’s results onto the ERG critical manifold, enhancing efficiency in spectral constraint optimization.

๐Ÿ” Scope (Important)

This initial public release is tailored for training small models from scratch, and is not yet optimized for large-scale fine-tuning tasks. Consider it a proof of concept, with ongoing tests extending to:

  • 3-layer MLPs (MNIST / FashionMNIST)
  • nano-GPT-style small Transformer models

Future work is dedicated to adapting larger architectures and fine-tuning workflows.

๐Ÿ“Š Early Results (FashionMNIST, 35 Epochs, Mean ยฑ Std)

The initial tests yield intriguing results:

  • Plain Test: Baseline 98.05% ยฑ 0.13 vs WW-PGD 97.99% ยฑ 0.17
  • Augmented Test: Baseline 96.24% ยฑ 0.17 vs WW-PGD 96.23% ยฑ 0.20

This indicates that while accuracy is nearly neutral at this scale, WW-PGD offers a significant advantage with a spectral control knob and comprehensive per-epoch tuning.

๐Ÿ“ฅ Repo & QuickStart

If you’re experimenting with training and optimization on your models, or looking for a data-free spectral health monitor + projection step, your feedback is invaluable. Join us in exploring other optimizers or small Transformer setups!

๐Ÿ’ฌ Community Engagement

Join the WeightWatcher Community on Discord to share insights and learn from fellow developers: Discord Invitation

A special thanks to Hari Kishan Prakash for his invaluable contributions to this project!

If you have any questions or need assistance with AI, feel free to reach out. Letโ€™s talk! #talkToChuck

Latest

Can You Picture Parenting Without ChatGPT? Sam Altman Can’t | Arwa Mahdawi

Sure! Hereโ€™s a refined heading for that section: ### The...

ARX Robotics Introduces Hector UGV to Enhance Speed, Range, and Autonomy for Ground Forces

ARX Robotics Unveils Hector: A Game-Changer for European Land...

AI: Catalyst for Digital Transformation in the Real Estate and Retail Sectors

Embracing AI: Transforming the Property and Retail Sectors in...

The Fundamental Misunderstanding Shaping American AI Policy

The Misguided AI Gamble: Why Trump's Push for Regulation...

Don't miss

Haiper steps out of stealth mode, secures $13.8 million seed funding for video-generative AI

Haiper Emerges from Stealth Mode with $13.8 Million Seed...

VOXI UK Launches First AI Chatbot to Support Customers

VOXI Launches AI Chatbot to Revolutionize Customer Services in...

Investing in digital infrastructure key to realizing generative AI’s potential for driving economic growth | articles

Challenges Hindering the Widescale Deployment of Generative AI: Legal,...

Microsoft launches new AI tool to assist finance teams with generative tasks

Microsoft Launches AI Copilot for Finance Teams in Microsoft...

A Smoother Alternative to ReLU

Understanding the Softplus Activation Function in Deep Learning with PyTorch Introduction to Softplus Explore how Softplus serves as a smooth alternative to ReLU, enabling neural networks...

How Swisscom Develops Enterprise-Level AI for Customer Support and Sales with...

Navigating Enterprise AI: Swisscomโ€™s Journey with Amazon Bedrock AgentCore How Swisscom is Leading the Charge in Scalable, Sustainable AI Solutions Navigating the AI Ecosystem: Swisscomโ€™s Approach...

Optimize AI Agent Tool Interactions: Integrate API Gateway with AgentCore Gateway...

Enhancing Enterprise Data Interactions with AgentCore Gateway: New API Gateway Support Whatโ€™s New: API Gateway Support in AgentCore Gateway Walkthrough: Setting Up API Gateway as a...