Exclusive Content:

Haiper steps out of stealth mode, secures $13.8 million seed funding for video-generative AI

Haiper Emerges from Stealth Mode with $13.8 Million Seed...

“Revealing Weak Infosec Practices that Open the Door for Cyber Criminals in Your Organization” • The Register

Warning: Stolen ChatGPT Credentials a Hot Commodity on the...

VOXI UK Launches First AI Chatbot to Support Customers

VOXI Launches AI Chatbot to Revolutionize Customer Services in...

Creating a Hugging Face text classification model in Amazon SageMaker JumpStart

Exploring SageMaker JumpStart with Hugging Face Text Classification Models for Transfer Learning

Amazon SageMaker JumpStart is a powerful tool that provides data scientists and machine learning practitioners with a suite of built-in algorithms, pre-trained models, and solution templates to jumpstart their ML projects. With SageMaker JumpStart, you can quickly train and deploy ML models, even if you’re new to the field.

One exciting feature of SageMaker JumpStart is the integration of Hugging Face models for text classification. These models allow for transfer learning, meaning you can fine-tune pre-trained models on your custom dataset, even when you don’t have a large corpus of text available. This feature is incredibly valuable for tasks like sentiment analysis, topic classification, and more.

In this post, we introduced using the Hugging Face text classification algorithm in SageMaker JumpStart. We demonstrated how to run real-time and batch inference on these models, as well as how to fine-tune them on a custom dataset. By following our example code, you can easily get started with text classification using Hugging Face models in SageMaker.

We also discussed the option of fine-tuning Hugging Face fill-mask or text classification models on a custom dataset. This allows you to download the required model from the Hugging Face hub, fine-tune it on your data, and deploy it for inference. Additionally, we touched on automatic model tuning, which helps find the best hyperparameters for your model.

Batch inference is another valuable feature offered in SageMaker JumpStart. It allows you to generate predictions on large datasets efficiently, without the need for a persistent endpoint. This can be particularly useful for preprocessing data or running inference on large datasets.

In conclusion, SageMaker JumpStart, in combination with Hugging Face models, provides a powerful platform for text classification tasks. Whether you’re looking to perform real-time inference, fine-tune a pre-trained model, or run batch inference, SageMaker JumpStart has you covered. For more information and hands-on examples, be sure to check out the provided sample notebook.

About the authors:
– **Hemant Singh**: An Applied Scientist with expertise in Amazon SageMaker JumpStart, Hemant has a background in machine learning and a passion for solving complex problems.
– **Rachna Chadha**: A Principal Solutions Architect AI/ML at AWS, Rachna is a strong advocate for the ethical and responsible use of AI for societal benefit.
– **Dr. Ashish Khetan**: A Senior Applied Scientist with a wealth of experience in machine learning and statistical inference, Ashish contributes valuable insights to the field.

Stay tuned for more updates and insights from our team of experts in the field of AI and machine learning. Thank you for reading!

Latest

I Asked ChatGPT About the Worst Money Mistakes You Can Make — Here’s What It Revealed

Insights from ChatGPT: The Worst Financial Mistakes You Can...

Can Arrow (ARW) Enhance Its Competitive Edge Through Robotics Partnerships?

Arrow Electronics Faces Growing Challenges Amid New Partnership with...

Could a $10,000 Investment in This Generative AI ETF Turn You into a Millionaire?

Investing in the Future: The Promising Potential of the...

Don't miss

Haiper steps out of stealth mode, secures $13.8 million seed funding for video-generative AI

Haiper Emerges from Stealth Mode with $13.8 Million Seed...

VOXI UK Launches First AI Chatbot to Support Customers

VOXI Launches AI Chatbot to Revolutionize Customer Services in...

Investing in digital infrastructure key to realizing generative AI’s potential for driving economic growth | articles

Challenges Hindering the Widescale Deployment of Generative AI: Legal,...

Microsoft launches new AI tool to assist finance teams with generative tasks

Microsoft Launches AI Copilot for Finance Teams in Microsoft...

Tailoring Text Content Moderation Using Amazon Nova

Enhancing Content Moderation with Customized AI Solutions: A Guide to Amazon Nova on SageMaker Understanding the Challenges of Content Moderation at Scale Key Advantages of Nova...

Building a Secure MLOps Platform Using Terraform and GitHub

Implementing a Robust MLOps Platform with Terraform and GitHub Actions Introduction to MLOps Understanding the Role of Machine Learning Operations in Production Solution Overview Building a Comprehensive MLOps...

Automate Monitoring for Batch Inference in Amazon Bedrock

Harnessing Amazon Bedrock for Batch Inference: A Comprehensive Guide to Automated Monitoring and Product Recommendations Overview of Amazon Bedrock and Batch Inference Implementing Automated Monitoring Solutions Deployment...