Exclusive Content:

Haiper steps out of stealth mode, secures $13.8 million seed funding for video-generative AI

Haiper Emerges from Stealth Mode with $13.8 Million Seed...

Running Your ML Notebook on Databricks: A Step-by-Step Guide

A Step-by-Step Guide to Hosting Machine Learning Notebooks in...

“Revealing Weak Infosec Practices that Open the Door for Cyber Criminals in Your Organization” • The Register

Warning: Stolen ChatGPT Credentials a Hot Commodity on the...

Assessing Fine-Tuned Large Language Models using WeightWatcher Part II: PEFT / LoRa Models – computed

Analyzing LLMs Fine-Tuned with LoRA using WeightWatcher

Evaluating Large Language Models (LLMs) can be a challenging task, especially when you don’t have a lot of test data to work with. In a previous blog post, we discussed how to evaluate fine-tuned LLMs using the weightwatcher tool. Specifically, we looked at models after the ‘deltas’ or updates have been merged into the base model.

In this blog post, we will focus on LLMs fine-tuned using Parameter Efficient Fine-Tuning (PEFT), also known as Low-Rank Adaptations (LoRA). The LoRA technique allows for updating the weight matrices of the LLM with a Low-Rank update, making it more efficient in terms of storage and computation.

To analyze LoRA fine-tuned models, you need to ensure that the update or delta is either loaded in memory or stored in a directory/folder in the appropriate format. Additionally, the LoRA rank should be greater than 10, and the layer names for the A and B matrices updates should include the tokens ‘lora-A’ and/or ‘lora-B’. The weightwatcher tool version should be 0.7.4.3 or higher to analyze LoRA models accurately.

By loading the adapter model files directly into weightwatcher and using the peft=True option, you can analyze the LLMs fine-tuned using the LoRA technique separately from the base model. The tool provides useful layer quality metrics such as alpha, which can help you evaluate the effectiveness of the fine-tuning process.

One interesting observation is that in some LoRA fine-tuned models, the layer alphas are less than 2, indicating that the layers may be over-regularized or overfitting the training data. Comparing the LoRA layer alphas to the corresponding layers in the base model can provide insights into the fine-tuning process and help optimize the training parameters.

Overall, analyzing LLMs fine-tuned with the LoRA technique can provide valuable insights into the model’s performance and guide further optimization strategies. By leveraging tools like weightwatcher and experimenting with different fine-tuning approaches, researchers and developers can enhance the efficiency and effectiveness of large language models.

Latest

Identify and Redact Personally Identifiable Information with Amazon Bedrock Data Automation and Guardrails

Automated PII Detection and Redaction Solution with Amazon Bedrock Overview In...

OpenAI Introduces ChatGPT Health for Analyzing Medical Records in the U.S.

OpenAI Launches ChatGPT Health: A New Era in Personalized...

Making Vision in Robotics Mainstream

The Evolution and Impact of Vision Technology in Robotics:...

Revitalizing Rural Education for China’s Aging Communities

Transforming Vacant Rural Schools into Age-Friendly Facilities: Addressing Demographic...

Don't miss

Haiper steps out of stealth mode, secures $13.8 million seed funding for video-generative AI

Haiper Emerges from Stealth Mode with $13.8 Million Seed...

Running Your ML Notebook on Databricks: A Step-by-Step Guide

A Step-by-Step Guide to Hosting Machine Learning Notebooks in...

VOXI UK Launches First AI Chatbot to Support Customers

VOXI Launches AI Chatbot to Revolutionize Customer Services in...

Investing in digital infrastructure key to realizing generative AI’s potential for driving economic growth | articles

Challenges Hindering the Widescale Deployment of Generative AI: Legal,...

Identify and Redact Personally Identifiable Information with Amazon Bedrock Data Automation...

Automated PII Detection and Redaction Solution with Amazon Bedrock Overview In an era where organizations handle vast amounts of sensitive customer information, maintaining data privacy and...

Understanding the Dummy Variable Trap in Machine Learning Made Simple

Understanding Dummy Variables and Avoiding the Dummy Variable Trap in Machine Learning What Are Dummy Variables and Why Are They Important? What Is the Dummy Variable...

30 Must-Read Data Science Books for 2026

The Essential Guide to Data Science: 30 Must-Read Books for 2026 Explore a curated list of essential books that lay a strong foundation in data...